

Motivation and introduction

Using first-principles simulations, we study electronic structures, charged and neutral excitations of large heterogeneous systems

- Nanoparticles for energy conversion
- Solid/liquid interfaces for photocatalysis
- Spin defects in semiconductors for quantum information science

We have developed **WEST**, a massively parallel implementation of many-body perturbation theory (GW/BSE) without empty states

- ✓ No explicit summation over virtual orbitals
- No explicit storage or inversion of large dielectric matrices
- ✓ Full frequency integration with contour deformation.

WEST has been successfully applied to large G_0W_0 calculations consisting of ~2,000 electrons on CPUs

The WEST code: Without Empty STates

GPU acceleration in WEST

WEST has been ported to NVIDIA GPUs

Porting strategies

- GPU libraries for performance: cuFFT, cuBLAS, cuSOLVER, ...
- Directives for portability:
 CUDA Fortran → OpenACC → OpenMP

Achievements

- Significant speedup over CPU code
- Excellent strong and weak scalability demonstrated on various supercomputers
- Tractable size of full-frequency G₀W₀ pushed to 10k electrons

OLCF/Summit 200.79 PFLOP/s NVIDIA V100 GPUs

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

https://www.nersc.gov/systems/perlmutter

NERSC/Perlmutter 93.75 PFLOP/s NVIDIA A100 GPUs

Projective dielectric eigenpotentials (PDEP)

Straightforward GPU offloading?

Hierarchical parallelization scheme

Hierarchical parallelization scheme

- All levels of parallelism in the PDEP algorithm are fully harnessed
- CPU-GPU and GPU-GPU communication cost is reduced

GPU porting and optimization strategies

v1: Initial GPU porting (baseline)

v2: Multi-level parallelization and data distribution

- Reduced CPU-GPU and MPI communication
- Improved load balance across GPUs

Full-frequency G₀W₀ calculation of COOH-Si/H₂O interface 1560 electrons, cutoff 60 Ry, PBE, ONCV PP Ground state DFT with Quantum ESPRESSO

Overlapping communication and computation

CPU and GPU operations can be done asynchronously

- MPI communications
- CPU-GPU communications
- GPU computations

Example:

Distributed matrix multiplication $\mathbf{A} \times \mathbf{B} = \mathbf{C}$


```
GPU v1
1 do i = 1, n_mpi
2 copy a_h to a_d
3 compute c_d(i) = a_d * b_d
4 circular shift a_h
5 end do
```



```
GPU v2 (async)
1 do i = 1, n_mpi
2   async circular shift a_h
3   copy a_h to a_d
4   compute c_d(i) = a_d * b_d
5 end do
```



```
GPU v3 (async + SP)

1 convert a_h to a_h_sp

2 do i = 1, n_mpi

3 async circular shift a_h_sp

4 copy a_h_sp to a_d_sp

5 convert a_d_sp to a_d

6 compute c_d(i) = a_d * b_d

7 end do
```


GPU porting and optimization strategies

v1: Initial GPU porting (baseline)

v2: Multi-level parallelization and data distribution

- Reduced CPU-GPU and MPI communication
- Improved load balance across GPUs

v3: Single-precision for selected operations

- Fast Fourier transforms (FFTs)
- Data communication (MPI)
- Quasiparticle energies match double-precision

v4: Additional optimizations

- Overlap between communication and computation
- GPU memory access
- MPI I/O

Full-frequency G₀**W**₀ calculation of COOH-Si/H₂O interface 1560 electrons, cutoff 60 Ry, PBE, ONCV PP Ground state DFT with Quantum ESPRESSO

Performance benchmark

1 NERSC/Perlmutter node = 4 NVIDIA A100 GPUs

1 NERSC/CoriGPU node = 8 NVIDIA V100 GPUs

1 OLCF/Summit node = 6 NVIDIA V100 GPUs

1 NERSC/CoriHaswell node = 32 Intel Haswell CPU cores

1 NERSC/Edison node = 24 Intel Ivy Bridge CPU cores

Full-frequency G₀**W**₀ calculation of CdSe nanoparticle 884 electrons, cutoff 50Ry, PBE, ONCV PP Ground state DFT with Quantum ESPRESSO

- Nearly ideal strong scaling demonstrated on various machines
- Time to solution on GPU nodes is less than 1/30 of that on CPU nodes
- 2x faster on A100 than on V100 (more memory, higher memory bandwidth, FP64 tensor cores)

Strong scaling to full Summit

- WEST-GPU scales to the entire Summit supercomputer
- Better scalability observed for bigger system (1,728-atom silicon supercell) due to a higher computation-tocommunication ratio
- 80 quasiparticle energies of the 1,728-atom silicon supercell solved in ~30 min using 25,920 V100 GPUs (94% of Summit)

1 Summit node = 2 IBM POWER9 CPUs + 6 NVIDIA V100 GPUs

Full-frequency G₀W₀ calculation of 1000 or 1728 Si atoms Ground state DFT with Quantum ESPRESSO

Large-scale full-frequency G₀W₀ calculations

Local density of states computed for prototypical systems representing our target applications:

- Large nanoparticles and interfaces
 - → materials for energy conversion
- Defects in semiconductors
 - → quantum information science (quantum computation, communication, and sensing)

system	N _{atom}	$\mathcal{N}_{ ext{electron}}$	$N_{\sf spin}$	N_{PW}
CdS/PbS	301	2,816	1	948,557
Si/Si ₃ N ₄	2,376	10,368	1	638,633
VV^0	1,598	6,392	2	314,653
<u> </u>				

Summary

The GW code in WEST has been ported to NVIDIA GPUs, with excellent performance & scalability achieved on various supercomputers including Perlmutter

Large-scale full-frequency G₀W₀ calculations demonstrated on OLCF/Summit

- 25k+ NVIDIA V100 GPUs
- 10k+ valence electrons

Next steps

- Demonstrate scalability to GPUs for quantum defect embedding theory (QDET) calculations (newly ported)
- Expand the GPU porting to cover BSE and electronphonon without empty states
- Achieve performance portability targeting exascale systems (ALCF/Aurora, OLCF/Frontier)

http://west-code.org

Acknowledgments

NERSC NESAP Tier-1

- Dr. Brandon Cook (LBNL)
- Dr. Soham Ghosh (LBNL)
- NERSC/Cori-GPU
- NERSC/Perlmutter

Computational resources

- OLCF/Summit (ALCC and INCITE)
- ALCF/Theta-GPU (discretionary allocation)

ANL GPU Hackathon (April 2021)

- Dr. William Huhn (ANL; now Intel)
- Dr. Kristopher Keipert (NVIDIA)

